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ABSTRACT 

Characterizing respiratory reactions to external stimuli is 
essential for understanding the complicated respiratory 

system, especially in clinical diagnosis and treatment. 

This research uses model-based system identification to 

correctly record and assess the respiratory system's 

reaction to mechanical ventilation, environmental 

changes, and pharmaceutical drugs. We use advanced 

system identification methods to create a dynamic model 

that accurately captures the respiratory system's 

nonlinear and time-varying behavior. 

Data-driven modelling and physiological insights are 

used to determine respiratory function parameters in the 

proposed strategy. The model is validated using 
controlled laboratory and clinical trial data. The results 

show that the model-based method accurately predicts 

respiratory responses, improving respiratory dynamics 

comprehension and management in healthy people and 

respiratory problem patients. 

This study advances respiratory physiology and 

biomedical engineering by improving respiratory 

function monitoring, prediction, and optimization in 

response to external stimuli. The system identification 

framework may improve patient-specific treatment 

techniques and individualized respiratory medicines. 

Keywords: Respiratory System, System Identification, 

Respiratory Dynamics, External Stimuli, Nonlinear 

Modeling, Time-Varying Systems. 

I. INTRODUCTION 

The respiratory system facilitates gas exchange and 

responds dynamically to internal and external stimuli to 

maintain equilibrium. Diagnosing, monitoring, and 

treating respiratory problems requires understanding 

respiratory system functioning under diverse situations. 

Mechanical ventilation, ambient contaminants, exercise, 

and pharmaceutical drugs can drastically affect 

respiratory mechanics, requiring proper modeling and 

analysis to anticipate and improve patient outcomes. 

Empirical approaches for respiratory system 

characterisation are valuable but typically lack the 

accuracy needed to account for the system's intrinsic 

nonlinearities and time-varying nature. These 

restrictions can compromise patient care, especially in 

critical care when real-time monitoring and 

management are crucial. There is rising interest in using 

respiratory system identification approaches to 

overcome these difficulties. System identification uses 

observable data to create mathematical models of the 

respiratory system's dynamics, offering a more accurate 

and complete knowledge of its function. 

These reviews are relevant to this work.: Mekonnen, T. 

M. et.al. in the year 2015 discuss in his paper models 

the respiratory system's response to environmental 

pollutants, providing insights into system identification 

techniques [1]. Athanasopoulos, N. et. al. had explained 

in his paper highlights the use of genetic algorithms for 

identifying respiratory system models, focusing on how 

system identification techniques can be employed 

effectively in the year 2014 [2]. In the year 2007, 

Kovács, L. et. al. in their work covers parameter 

estimation techniques in system identification, 
specifically applied to the respiratory system [3]. In the 

other hand, Kachroo, P. et. al. discuss in their research 

article deals with the identification of time-varying 

parameters in respiratory models, which is directly 

relevant to the topic [4]. Ben-Tal, A. et. al. referred in 

their article offers insights into simplified mathematical 

models of gas exchange, which can be useful in system 

identification studies in the year 2006 [5]. In 2004, 

Sundaresan, A. et. al. had discussed in his study 

explores nonlinear modeling approaches to lung tissue 

mechanics, which is relevant for understanding how the 

respiratory system responds to various external forces 
[6]. Bates, J. H. et. al., in the paper discusses the 
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application of modeling techniques to understand the 

pulmonary response to broncho constricting agents, 

which can be considered an external stimulus in the year 

2003[7]. 

This research presents a model-based system 

identification approach for characterizing respiratory 

response to external inputs. The suggested method uses 

modern algorithms and data-driven methods to capture 

the numerous physiological parameters that regulate 

respiratory performance. The model is based on 
experimental data from healthy people and respiratory 

problem patients, making it applicable to many 

situations. 

This work aims to improve respiratory model prediction 

accuracy to better anticipate respiratory system 

responses to treatments. Clinically, such projections can 

guide ventilator control, medication delivery, and other 

treatment techniques. This discovery provides a 

powerful tool for developing tailored respiratory 

medicines, which advances biomedical engineering 

[8][9]. 

In the next parts, we will explain system identification 

theory, respiratory model development process, and 

validation experiment findings. Our findings will also be 

applied to clinical practice and suggested for further 

research. 

I.1. Flow diagram 

The data provided used to create this comparison 

flowchart comes from an example table; specifically, the 
model of the system identification approach is shown in 

the first column (M-1,..., N), and the rows can be 

customized according to our preferences. These F-1 

through F-i in the second column reflect the 

measurement parameters used to compare the various 

models, such as FEV1, PEF, etc. The procedure for 

doing this comparison is as follows: after choosing the 

parameter, use the system identification tools to specify 

the verified model. Proceed with the parameter estimate 

for each and every gathered value when you have 

satisfied the model with its parameters and achieved high 
efficiency from it. Otherwise, raise the value of the 

model M until it reaches N, and compare the flawless 

outcomes if the model still doesn't satisfy. Raise the 

value of parameter F from 1 to i and compare the ideal 

one if the parameters are still unsatisfied with the model. 

Stop the system after the parameters and model have 

achieved 100% correctness based on the data [10][11]. 

 
Fig 1. Flow diagram 

We may use the two sets of spirometry data—one for 

forced expiratory flow (PEF) and another for forced 

vital capacity (FEV1)—as input for our future 

procedures. Our goal in collecting this data is to find 
the right respiratory modeling system model. Our 

demands were taken into account while selecting the 

system identification model in MATLAB 19. First, 

we'll assign states using the States space analysis 

method and compare them to the accurate values. You 

need to fix the number of states for state space 

processes to N before you can use the system 

identification tools in MATLAB. Once all these steps 

are done, the graphical model will show the predicted 

accuracy and efficiency of the specific system. Get the 

respiratory modeling tools employing system 
identification, which use distinct N states for state space 

and choose the best design model with high accuracy 

and greater efficiency. 

 
Fig 2. Working process 

Fig 2 shows how the model validation done in step by 

step from data collection to model suitable 

identification, compare, application the system 

identification using the validate the state, and finally 

efficiency estimation for the system. Fig 3 identifies the 
cross-sectional views of the spirometer [12][13]. 
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Fig 3. Cross sectional view of Spirometer 

II. EQUIPMENT APPLY FOR THE DATA 

DRIVEN PROCESS 

  
 

 
Fig 4. Sample photos for data collection: (a) elder person 

(13years to rest); (b) child (up to 12years) 

Sampled data collected from 2 type of age groups (up to 

12years and 13years to rest) shown in Fig 4. In the Fig 5, 

it is explained how the connectivity of the spirometer 

with the computer and the data transfer process through 

it [14][15]. 

 
Fig 5. Connectivity of spirometer with computer and 

data transfer process 

II.1. Different sensors 

 Flow sensor: Flow sensors are used in various 

industries, including water treatment, oil and gas, 
HVAC, automotive, and medical devices, to monitor 

and control the flow of liquids or gases. 

 Pressure sensor (MPXV7002DP, 

MPX2010DP): Both the sensor uses piezoresistive 

technology. They had a diaphragm that responds to 

pressure changes. Because the piezoresistive 

components' resistance varies in direct proportion to 

the applied pressure, the pressure difference is 

analogously represented by the voltage output. While 

both sensors are excellent at what they do—measure 

differential pressure—which one is best will depend 

on factors including the application's pressure range, 
sensitivity, and environmental conditions. 

 Dry seal rolling volume sensor (Primary 

sensor): A dry seal rolling volume sensor is a 

specialized sensor used where high accuracy, long-

term reliability, and the prevention of fluid 

contamination are critical. This type of sensor is 

typically used in situations where maintaining the 

purity of the fluid or gas is crucial, or where the fluid 

might cause corrosion or wear on moving parts. 

 MAX30101 sensor, LSM9DS1 sensor: These 

sensors are advanced sensors used in wearable 
devices, health monitoring systems, and motion 

detection applications. They serve different purposes 

but are often used together in devices like 

smartwatches and fitness trackers. 
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II.2. Other components of the spirometer 

 ARM Cortex-M4: The ARM Cortex-M4 is a 

32-bit microprocessor core designed by ARM 

Holdings, widely used in embedded systems and 

microcontroller applications. It is part of ARM's 

Cortex-M series, which is optimized for cost-sensitive 

and energy-efficient applications, making it suitable 

for a broad range of devices, from simple sensors to 

complex control systems. 

 Rotation transducer: A rotation transducer, also 
known as a rotary encoder, is a sensor that converts the 

angular position or motion of a shaft or axle into an 

electrical signal. This signal can be used to determine 

the rotational position, speed, or direction. 

 Turbine transducer: A turbine transducer is a 

type of flow sensor that measures the flow rate of a 

fluid (liquid or gas) by detecting the rotational speed of 

a turbine or rotor placed in the flow path. 

 Piezo sound transducer: A piezo sound 

transducer, often referred to as a piezoelectric buzzer 

or speaker, is a device that converts electrical signals 
into sound using the piezoelectric effect. It can also 

function in reverse, converting sound into electrical 

signals in some sensor applications. 

 
 

Fig 6. Sample of data file from excel snip 

III. PROCESS FOR PROGRAMMING FOR 

DIFFERENT MODEL AND DIFFERENT AGE 

GROUPS: 

III.1. Program Flow for ssregest Model for age above 

13 years: 

1. Load Data 
o Load data from an Excel file named Data-

short.xlsx. 

2. Extract Data for AGE, GENDER, and PEF 
o Extract columns for age, gender, and pef. 

o Store age in age, gender in gender, and pef in 

pef. 

o Create input_signals matrix with age and 

gender. 

o Create output_signal vector with pef. 

3. System Identification 
o Define the sampling time (sampling_time). 

o Create iddata_object using output_signal, 

input_signals, and sampling_time. 

4. Adjust Model Complexity and Options 
o Define the number of states (n_states). 

o Specify options for the ssregest function using 
ss_opts. 

5. Estimate State-Space Model 
o Estimate the state-space model sys_est_ss 

using ssregest. 

6. Compare Identified Model 
o Compare the iddata_object with the estimated 

system sys_est_ss. 

7. Save Identified Model 
o Save the identified model sys_est_ss to a file 

named identified_model_ss.mat. 

III.2. Pseudocode for N4sid model using for age 

below 12 years: 

1. Load Data from 'Child.xlsx' 

2. Extract Columns: 

- age = data(:, 1) 

- gender = data(:, 2) 

- pef = data(:, 3) 

3. Create Input Signals and Output Signal: 

- input_signals = [age, gender] 

- output_signal = pef 

4. System Identification: 
- Define sampling_time = 1 

- Create iddata_object = iddata(output_signal, 

input_signals, sampling_time) 

5. Adjust Model Complexity: 

- Define n_states = 120 

6. Specify Options for n4sid: 

- Set opts = n4sidOptions ('Display', 'on', 

'EnforceStability', true) 

7. Estimate State-Space Model: 

- sys_est_optimized = n4sid (iddata_object, n_states, 

opts) 
8. Compare Identified Model: 

- compare (iddata_object, sys_est_optimized) 

9. Save Identified Model: 

- save ('identified_model_optimized.mat', 

'sys_est_optimized') 

IV. RESULTS and DISCUSSIONS 

State-Space Model Results using ssregest: 

Utilizing the ssregest function in MATLAB, we applied 

300 data points from our dataset to identify a state-
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space model with 25 states. The results of the system 

estimation are as follows: 

IV.1. PEF Prediction Model:  

The state-space model, incorporating age and sex as 

input features for predicting Peak Expiratory Flow 

(PEF), demonstrated a system estimation accuracy of 

approximately 43.57%. This metric represents the 

model's ability to capture the dynamics and relationships 

within the data, providing insights into the variability of 

PEF values based on the specified inputs. 

FEV Prediction Model:  

For Forced Expiratory Volume (FEV), the state-space 

model exhibited a system estimation accuracy of 

approximately 44.54%. This indicates the model's 

effectiveness in capturing the underlying dynamics of 

FEV values, considering age and sex as influential 

factors. 

       

  

FEV Plot  PEF Plot  
Fig 7. sample output for using different modelling in 

case of FEV and PEF collected data plot 

Novelty clam:  

So far in our knowledge, utilization of these three 

models for accuracy of analysis propose for system 

identification of this work is done 1st time. 

Limitation of data collection: 

At a time, using this setup, one data collection can be 

done and transfer. After transfer the collected data, the 

system is ready to collect the next data from the user. 

IV. CONCLUSION 

We provide a model-based system identification 

approach for defining the respiratory system's external 

stimuli response in this research. We created a dynamic 

model that correctly captured the respiratory system's 

nonlinear and time-varying behavior using 

sophisticated system identification techniques and 

physiological insights. Our model was verified using 

experimental data from healthy persons and respiratory 

problem patients, proving its resilience and usefulness 
in various clinical circumstances. 

Our work shows that system identification approaches 

can enhance respiratory dynamics knowledge and 

prediction in response to mechanical ventilation, 

environmental changes, and pharmaceutical therapies. 

This methodology can improve patient outcomes by 

improving clinical decision-making with more accurate 

and trustworthy forecasts. 

Additionally, the model-based approach can improve 

tailored respiratory therapy. Clinicians can improve 

treatment efficacy and decrease side effects by adapting 
therapies to respiratory system dynamics. This research 

also allows for the study of increasingly complex 

stimuli, real-time monitoring, and adaptive models that 

adjust to changing patient situations. 

Finally, the model-based system identification 

methodology described in this research advances 

respiratory physiology and biomedical engineering. Its 

ability to characterize respiratory reactions to 

environmental stimuli might revolutionize acute and 

chronic respiratory treatment. 
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