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ABSTRACT 

Anticipating Blood Glucose (BG) levels for patients 

can assist in averting hypoglycaemia and 

hyperglycaemia episodes beforehand. Therefore, to 

predict Blood Glucose (BG) values in Prediction 
Limits (PHs) of 15, 15, 30, and 60 minutes, this study 

suggests a predictive for blood glucose management 

using a deep learning algorithm. The model proposed 

by the author uses past Blood Glucose values 

congregated by devices used for constant monitoring 

of glucose as an endogenic feature and information 

about insulin administration(times) and carbohydrate 

intake as an exogenic factor. In this study, authors 

developed a predictive model for Type-1 diabetes 

using clinical parameters. The four prediction models 

were taken, which are subjected to a Bat Algorithm 
(BA) to optimize the weights using ensemble 

approaches and provide the ultimate predicted BG 

values. The model performance was rigorously 

evaluated using RMSE and loss function metrics to 

assess the accuracy and convergence.  RMSE value of 

0.082 was achieved, indicating a high level of 

precision for blood glucose level prediction; while the 

loss function stabilized at 0.0068, demonstrating the 

model's effectiveness in learning from the dataset. 

These results surpass current benchmarks and suggest 

that further refinement, such a model could 

significantly enhance the predictive monitoring of 
Type-1 diabetes. The findings in the paper indicate 

that the suggested model performs noticeably better 

than the baseline after applying four different 

algorithms for further optimization of results.  

 

Keywords: Deep Neural Network, Deep Learning, 

Ensemble Learning, Feature Selection, Prediction 

Model, Type-1 diabetes. 
 

I. INTRODUCTION 

Millions of people around the world struggle with 

diabetes mellitus (DM), a metabolic disease with 

significant social and economic costs. This chronic 

condition arises from problems with blood sugar 

regulation, often leading to high blood sugar levels. 

Mainly there are two types of diabetes [29]: Diabetes 

Mellitus Type_1(T1DM) and Diabetes Mellitus 

Type_2(T2DM). In the paper, the focus is on the 

Type_2, where the most prevalent form occurs when 
the body either produces insufficient insulin or 

becomes resistant to its effects. While lifestyle 

changes are crucial for managing T2DM, medication 

may also be necessary [29][32]. 

 

Unlike Type-1, where the body lacks insulin, on the 

other side, T2DM people still produce insulin, but 

then again their body's cells resist its effects, leading 

to high blood sugar i.e. hyperglycaemia [1]. This 

insulin resistance can cause various complications, 

like headaches, lethargy, and even coma [32][33]. To 
manage their blood sugar effectively, these individuals 

typically require self-monitoring of blood glucose 

(SMBG), traditionally done through finger-prick tests. 

In recent years, various technologies have emerged to 

offer alternative, less invasive methods for blood 

sugar monitoring [2]. However, emerging from 

technological advancements, continuous glucose 

monitoring (CGM) represents a paradigm shift in 

blood glucose (BG) measurement for diabetic 

patients. Unlike traditional finger-prick methods, 

CGM utilizes skin-mounted sensors to measure BG 

continuously and provide real-time data at high 
resolution. This not only facilitates tighter BG control 

but also fuels research efforts aiming to predict future 

BG values, opening exciting avenues for personalized 

diabetes management [3]. Blood sugar (BG) levels 

aren't random; they follow a specific pattern. This 

predictability allows us to use historical data from 

continuous glucose monitoring (CGM) to forecast 

future BG values [4]. While traditional statistical 

methods were initially used in BG prediction models, 

they struggled to capture the complex, non-linear 

nature of BG fluctuations. Recent research has 
predominantly focused on machine learning models, 

which excel at handling such non-linear relationships 

[5-8]. 
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While numerous studies used machine learning to 

predict blood sugar based solely on CGM readings, 

newer models show improved accuracy by 

incorporating additional factors like insulin intake and 

carbohydrate consumption [9]. Additionally, with 

Type-2 Diabetes (T2DM) making up over 90% of 

diabetes cases, research has shifted towards methods 
specifically tailored to its different underlying causes 

compared to Type-1 Diabetes (T1DM). This 

highlights the importance of considering both the data 

used and the specific type of diabetes for more 

effective BG prediction. 

Blood sugar levels are influenced by multiple factors 

like stress, emotions, activity, insulin, and 

carbohydrates [31]. M.J. Sai et, al, 2022 works for 

Type-2 diabetes mellitus used five RNN models for 

prediction and a genetic algorithm is applied for 

weight optimization and results. The results were 
identified based on parameters like ReLu and 

Adamax. This variability makes it difficult to pinpoint 

the type of RNN algorithms which perform best [10]. 

The modified Long Short-Term Memory (LSTM) 

model, for example, may excel in some situations but 

struggle in others. To address this challenge, a Bat 

Algorithm (BA) is used to optimize the weights of an 

ensemble of different RNN models, tailoring them to 

specific combinations of influencing factors. For 

better results in T1DM author used sigmoid as 

activation and Adam rather than Adamax. This 

approach applied to T1DM data, utilizes four RNN 
algorithms to predict future BG levels for different 

aged people at different intervals (matching insulin 

and carbohydrate absorption rates) to prevent 

hypoglycemia and hyperglycemia. These prediction 

horizons align with common practices, allowing for 

easier comparison with other studies [10-15][30]. 

Based on the above discussion, the proposed research 

work is separated into various parts. Section 2 

describes a review of the literature on diet 

recommendation systems conducted by various 

researchers. Section 3 highlights about proposed 
methodology its framework, description and process. 

Section 4 presents the experimental evaluation of the 

proposed model, assessing its performance in 

predicting blood sugar levels. Section 5 concludes the 

study which summarizes the key findings and offers 

recommendations for future research directions. 

 

II. RELATED WORK 

During early times finger stick was used for the self-

tracking of Blood Glucose (SMBG) of diabetic 

patients to monitor fluctuations in their levels of blood 

glucose (BG) every few hours. 

Continuous_Glucose_Monitoring (CGM) systems, 

which deliver Estimated Glucose Values (EGV) 

regularly, has facilitated the collection of highly 

valuable data. This data collection has facilitated the 

creation of models for predicting BG levels and 
systems for early hypo-glycemia detection. CGM 

devices estimate glucose levels by measuring BG in 

the interstitial fluid, making them indirect methods. 

Consequently, regular SMBG tests are still necessary 

for periodic checks, and calibration of EGVs is crucial 

to enhance their accuracy. The precision of CGM 

devices, therefore, hinges on their calibration 

algorithms. Concerns regarding the clinical 

substitutability of EGVs for direct BG measurements 

have been explored by Rebrin et al [16]  

 

A. Background  

Numerous research efforts applied to focus on using 

data from Glucose Monitoring devices (CGM) which 

Continuously predicts future blood glucose (BG) 

levels. These predictions aim to manage and control 

BG levels efficiently to avert hypoglycaemia in 

diabetes patients, often employing alert systems. 

However, most of these studies have been conducted 

either in a controlled environment or through diabetic 

patients [17]. For an introductory survey of this 

research, Oviedo et al. provide a concise summary. [5] 

The pioneering work by Bremer and Gough  [4] 
demonstrated the feasibility of predicting future BG 

levels from historical CGM data, marking the 

beginning of numerous studies that applied both 

statistically traditional methods and modern machine 

learning techniques. Sparacino et al. [18] explored the 

prediction capabilities of a simple polynomial model 

versus an autoregressive (AR) model in a group of 28 

T1DM patients, evaluating the models based on their 

prediction errors and the models' ability to capture the 

variability in BG levels. 

Further advancements were made by Sun et al. [18], 
who employed the LSTM and Bi-LSTM model to 

analyze data from 26 T1DM patients, achieving 

notable accuracy in their predictions. Perez-Gandía 

and colleagues [20] utilized an artificial neural 

network in a small cohort of T1DM patients, 

demonstrating the network's effectiveness over 

several forecasting horizons. 

Rabby et al. [21] introduced a sophisticated approach 

by combining a stacked LSTM framework with 

Kalman smoothing, processing eight weeks of data 
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from T1DM patients to yield impressive predictive 

accuracy. Similarly, Li et al. [22] introduced a novel 

neural network convolutional-RNN (CRNN) model, 

tested on both simulated and real patient data, 

showcasing its potential with promising prediction 

errors at various forecasting intervals. These studies 

collectively underscore the potential of leveraging 
CGM data through advanced analytical techniques for 

better diabetes management. 

 

B. Preliminaries  

In this study, authors applied four algorithms based on 

RNNs at the initial stage to develop models for 

predicting blood glucose (BG) values. RNNs are a 

type of Artificial Neural Network (ANN) 

characterized by their hidden nodes connected in a 

cyclical pattern, enabling the network to process 

sequences of varying lengths flexibly. Despite their 
flexibility, RNNs encounter challenges with long-term 

dependencies, as the learning effectiveness decreases 

with increasing gaps between data points. 

To address these challenges, LSTM networks 

introduced cell states within the traditional RNN 

architecture, mitigating the long-term dependency 

issue[24]. A stacked LSTM enhances this approach by 

adding multiple hidden layers, increasing the 

network's depth and potential for accuracy. Unlike 

standard RNNs that only utilize past data, 

bidirectional LSTMs also incorporate future data, 

further improving long-term dependency handling. 

The Gated Recurrent Unit (GRU) algorithm, with its 

update and reset gates, offers performance comparable 

to LSTM but with more efficient computations [25]. 

Furthermore, Bat Optimization Algorithms (BA) are 

employed for optimizing ensemble weights [32]. BA 

works by using behaviour of microbats which uses its 

echolocation values and perform global optimization: 

These methodologies combined advanced neural 

network architectures and evolutionary algorithms to 

augment the efficiency and accuracy of BG prediction 

models in this research. 

 

III. METHODOLOGY 

This research introduces deep learning models for 

predicting blood glucose (BG) levels, categorized into 

univariate and multivariate models based on the input 

variables used. The univariate model relies solely on 

historical BG data, while the multivariate model 

incorporates additional factors such as carbohydrate 

(CHO) intake and the timing of insulin injections 

alongside past BG values. Although both models 

share the same structural design, their inputs vary. The 

comprehensive methodology for this work is 

illustrated in Figure shown below(Figure 1). 
 

 
 
Fig.1. Prediction model for Blood-Glucose-Values 

 

The methodology unfolds through several stages: 
gathering data, preprocessing it, forecasting time 

series with four RNN-based algorithms, and 

optimizing the ensemble weights using BAT 

Optimization Algorithms (GAs). The general steps to 

work are as follows: 

 

Step1: Data Preparation: Initially, websites and 

databases were developed to enable the remote 

submission of data. Demographic details of diabetes 

patients, CGM data, as well as carbohydrate and 

consumption of insulin information, fed through a 

web interface and saved in the database table. 
Subsequently, this collected data was transformed into 

formats compatible with neural networks through a 

preprocessing step. 

 

Step2: Prediction Model Development: The data 

which was fed as input data were organized based on 

the specified lookback period, which determines the 

sum of values considered in past, and the timestamp, 

indicating the sequence length. Data samples were 

arranged using a sliding window approach with a step 

size of one. A comprehensive illustration of the data 

structuring process for neural network compatibility is 

depicted in Figure 2, which includes terms defined as 

follows: "Lookback" refers to the time interval in 

minutes from which BG readings are taken as input; 

"prediction point" signifies the future time at which 

BG levels are forecasted, expressed in minutes post-

horizon (PH); and "sampling rate" is the frequency at 

which BG readings are recorded, set at every 5 

minutes. 
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TABLE I 

 HYPER TUNING PARAMETER VALUES 

Hyperparameter Value 

Lookback  5 

Count of units 50 

Group size 40 

Transfer function Sigmoid 

Optimization Technique Adam 

Cost function MSE 

No. of iterations 250 

 
Step 3: Optimization with Bat Algorithms: For the 

subsequent optimization phase (step 3), four distinct 

RNN-based algorithms were applied to generate BG 

value predictions. Each algorithm differs slightly in its 

approach, with specifics outlined in Table I, 

particularly regarding hyperparameters. These 

hyperparameters were finely tuned through an 

experimental process of trial and error to achieve 

optimal performance. 

Step4: Optimization with Bat Algorithms (GAs): This 

stage focuses on the BAs based on the predicted blood 

glucose (BG) values generated by each RNN model 
from  

Step5. The primary goal of employing BAs is to fine-

tune each RNN model by optimizing the ensemble of 

weights. The fitness of each RNN's output is 

evaluated, leading to the identification of the optimal 

weight configuration through an objective function 

which aims to minimize the Root Mean Square Error 

(RMSE).  

 

A. Workflow  

To follow the baseline methods, the workflow of the 
proposed approach is shown below. Figure 2 

represents a detailed explanation of the process used 

by the author. The workflow represents the workflow 

for a machine learning model that's designed for 

continuous glucose monitoring (CGM) in patients 

with Type 1 diabetes mellitus using four models along 

with an optimization algorithm. Each step contributes 

to refining the data and improving the predictive 

performance of the model: 

 Input Diabetes Dataset: This is the raw data 

collected from the CGM devices which monitor 
the glucose levels of patients with Type 1 

diabetes over a while. 

 Data Cleaning: Given that real-world CGM data 

can be messy, this step likely involves removing 

outliers, errors, or irrelevant data points to ensure 

that the dataset is clean and ready for processing. 

 Feature Selection: Here, you decide which 

features (e.g., historical glucose levels, time of 

day, meals, insulin doses) are most relevant for 

predicting future glucose levels. This is crucial 

for improving the model's accuracy and 
efficiency. 

 Pre-Processing of Data: This phase includes 

several sub-steps to prepare the data for the 

LSTM model: 

o Min-Max Transformation: A common scale 

is set and the scaling technique adjusts the 

features to that scale without distorting 

differences in the ranges of values. 

o Ranging the data: This may involve setting 

specific ranges for the data, perhaps to match 

the input requirements of the LSTM model 
or to focus on specific glucose levels that are 

of clinical significance. 

 

 
Fig.2. Workflow of the proposed approach 

 

 Processing using LSTM: LSTM networks 

are mainly suitable for time-series data like 

CGM readings because they can learn and 

remember long-term dependencies. In this 

context: 

o Sigmoid: This is an activation function 
that's used within the LSTM gates to control 

the flow of information. 

Performance Parameters 

RMSE Accuracy 
Confusion 

Matrix 

Processing using LSTM 

Sigmoid Adam  
Hidden 
Layer: 4 

Learning 
Rate: 0.01 

Pre-Processing of Data 

Min-Max Transformation Ranging the data 

Input Diabetes Dataset 

Data Cleaning Feature Selection 
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o Adam: An optimization algorithm that 

adjusts the network weights iteratively 

based on training data to minimize 

prediction errors. 

o Hidden Layer: 4: Suggests that the LSTM 

has four layers deep, which allows the 

network to learn complex patterns in the 
time-series data. 

o Learning Rate: 0.01: This is a 

hyperparameter that governs the speed at 

which the network learns. A learning rate of 

0.01 is a balanced choice that's neither too 

slow nor too fast. 

 Performance Parameters: To evaluate the 

effectiveness of the LSTM model, several 

metrics are used: 

o RMSE (Root Mean Square Error): A 

common metric for regression problems. 
It‘s particularly useful for CGM since it 

can highlight large errors in glucose level 

predictions. 

o Accuracy: This might refer to the 

proportion of time, predicted glucose 

levels are within a certain range of the 

actual readings, which is important for 

clinical decisions. 

o Confusion Matrix: This is unusual for 

regression tasks like CGM prediction but 

could be used if the predictions are 

categorized (e.g., into hypo-, hyper-, or 
normal glycemic states). 

 

This workflow supports the development of a robust 

predictive model for CGM in Type-1 diabetes 

patients, to provide accurate forecasts of glucose 

levels, allowing for better glycemic control and early 

warning of potential hypo- or hyperglycemic events. 

 

A. Algorithm  

To take the input data from the selected diabetes 

dataset from the public repository, the selected 
attributes are: 

Sample_Number:   Si 

Glycemic index value:   HbA1c/ 
                           carbohydrate intake and 

insulin 

Factor to predict:   Diabetic 

And the other key factors to determine the outcome 

are Gender and Age. Initially, the models used were 

the LSTM, Stacked LSTM, Bi-LSTM and GRU. For 

enhanced performance and understanding of the 

working of the proposed method, the modified LSTM 

is used. The algorithm to work on the proposed model 

is shown as Algorithm I. 

Algorithm I: M-LSTM(Diabetes Dataset) 

Step 1. Initialize the sample size with the 

dataset tuples i.e. SN, sample size N of the 

dataset 

Step 2. Principal Component Analysis (PCA) 

is applied to get the selected attributes and the 

featured selection of Si, Hb1Ac, and Diabetic, 

which is further classified into the diabetic, 

pre-diabetic, and non-diabetic categories. 

Step 3: Under the pre-processing method, the 

min-max transformation is applied to the 

tuples to get the ranged value to compute.  

# Transformation 

scaler = MinMaxScaler() 

scaler.fit(x) 

x = scaler.transform(x) 

# reshape 
x = x.reshape(x.shape[0], x.shape[1], 1) 

Step  4: For the input Si, Modified LSTM is 

applied to sequences the outcomes and their 

long-range dependencies, using the Sigmoid 

Activation Function. 

dense1 = LSTM(100, activation = 

'Sigmoid')(input1)  

Step 5: For the Hidden layers count 4, the 

learning rate is set to 0.01 with the Adam 

optimizer  

keras.optimizers.Adam(learning_rate=0.01) 

Step 6:  Train the model and the Adaptive 
property of the proposed model holds the 

values and uses 50 epochs with successive 

LSTM approach.  

The same algorithm is implemented in the next 

section and results are discussed on different epochs 

count. 
 

IV. IMPLEMENTATION 

This section delves into the experiments carried out 

the effectiveness of the derived predictive model. 

Initially, the dataset was acquired and subsequently 

pre-processed to ensure it was suitably formatted for 

the neural network, involving filtering and cleaning 

steps. By following this method, the evaluation of the 
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model is in two distinct scenarios, differentiated by 

the type of input data used. Further, identify the 

models are anlyzed that focusing on the RMSE 

metrics. To further understand the disparities in 

predictive accuracy residual analysis, and CG-EGA 

were employed. 

 

A. Data Overview 

The dataset was sourced from the Dexcom G5 Mobile 

Continuous Glucose Monitoring (CGM) system,  

involving 51 hospitalized patients with Type-2 

Diabetes Mellitus. The Dexcom G5 system comprises 

a sensor, transmitter, and mobile application. The 

device records glucose levels every 5 minutes 

throughout 4 to 7 days, with the sensor affixed to the 

patient's body, transmitting data to the mobile app 

receiver at consistent intervals. Data collection 

occurred at SoonChunHyang University-Cheonan-
Hospital [27] from July 2019 to March 2021. The 

amassed data, including patient demographics, CGM 

readings, and insulin and CHO intake information, 

was stored in an APM (Apache-PHP-MySQL) based 

database, and then exported in CSV format for 

research purposes. The patient cohort information is 

detailed in Table 2. 

Out of the initial 51 diabetes patients, 29 were eligible 

for inclusion in the multivariate models, having 

provided valid CHO intake and insulin administration 

data. Consequently, the analysis was structured as 

follows: (1) evaluating the univariate model using 

data from all 51 patients, (2) comparing the efficacy 

of the multivariate model against the univariate model 

with data from the subset of 29 patients, and (3) 

employing the Root Mean Square Error (RMSE) as 

the metric for model performance assessment, with 

further examination of the best and worst outcomes to 

elucidate the variance observed between the two 

groups. 

 

B. Data Preprocessing 

The main goal of preprocessing was to clean and 

convert the data into a format compatible with neural 

network models. Unlike simulated in silico data, the 

data for this study were derived from clinical settings, 

introducing the possibility of outliers due to errors in 

wireless device communication. Moreover, the 
variability in patient-recorded exogenous factors, such 

as carbohydrate (CHO) intake and insulin 

administration, necessitated meticulous preprocessing 

to ensure consistency and reliability. Initially, CGM 

readings obtained during the study were categorized 

as ―low‖ for BG values under 60 mg/dL and ―high‖ 

for those above 400 mg/dL. As a result, both the input 

CGM readings and the model's output predictions 

were calibrated to maintain a minimum of 60 and a 

maximum of 400 mg/dL. Furthermore, the direct 

patient input of insulin and CHO data was 
standardized by converting all entries to binary (0 or 

1) values, addressing the variation in how patients 

reported their CHO intake and insulin usage. This 

approach was taken to simplify and standardize the 

representation of CHO and insulin data across 

patients. Lastly, time-series data, including 

timestamps for insulin and CHO entries, were 

integrated with historical BG values as part of the 

preprocessing effort. 

 

C. Results 

The results of experiments were conducted under two 

different setups based on the type of input data: 

univariate models, which utilize only glucose 

readings, and multivariate models, which incorporate 

additional Carbohydrate intake and administration of 

several times insulin alongside glucose monitoring 

data. The efficacy of these models was assessed and 

predicted over horizons of 15, 30, and 60 minutes 

post-horizon (PH), along with their performance 

benchmarked against an ARIMA model serving as the 

baseline[28]. Figure 3 shows the outcome as the loss 

function and RMSE on 20 epochs; whereas figure 4 

shows the same on 50 epochs. 

 

 
Fig.3. Loss and RMSE value at 20 epochs 
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Fig.4. Loss and RMSE value at 50 epochs 

 

The evaluation of the proposed models was based on 

two key metrics: Root Mean Square Error (RMSE) 

and Continuous Glucose-Error Grid Analysis (CG-

EGA). RMSE is a widely recognized measure in 
regression analyses, providing a basis for performance 

comparison across various studies. CG-EGA, on the 

other hand, offers an evaluation of the clinical 

relevance of BG prediction models. It employs an 

error grid to categorize the accuracy of predicted 

versus measured BG levels into five zones, from A to 

E, with Zone A indicating the highest clinical 

accuracy. The distribution of prediction points closer 

to Zone A signifies more clinically relevant outcomes. 

Univariate Model: Results Using CGM Data. In this 

segment, we explore the outcomes of applying a 
univariate model to CGM data from all 51 patients; 

where the model solely relies on CGM readings, 

excluding any external factors. The univariate model 

demonstrated superior performance with the lowest 

variability in its results. Notably, at prediction 

horizons of 15 and 30 minutes, the model's accuracy 

significantly surpassed that of the baseline model, as 

confirmed by a 5% level of statistical significance. 

Multivariate Model: Multivariate Model Results 

Including Exogenous Factors. This section analyzes 

the performance of univariate and multivariate models 
based on data from 29 patients. Among the original 

51, 29 diabetic patients qualified for multivariate 

analysis. For these patients, the RMSE values were 

11.08 (3.19), 19.25 (5.28), and 31.30 (8.81) mg/dL for 

prediction horizons of 15, 30, and 60 minutes, 

respectively. In comparison, using the same patients' 

data in univariate models resulted in RMSEs of 11.28 

(3.34), 19.99 (5.59), and 33.13 (9.27) mg/dL for the 

respective prediction horizons. The baseline ARIMA 

model had RMSE values of 14.82 (4.41), 23.11 

(6.66), and 35.67 (10.23) mg/dL. Thus, both the 

univariate and multivariate models significantly 

surpassed the baseline, as shown by t-tests with a 5% 

significance level. Furthermore, the multivariate 

models demonstrated marginally better accuracy than 
the univariate models, and the analysis discusses 

potential reasons for this slight difference." 

 

V. CONCLUSION 

This research focused on developing highly accurate, 

individualized blood glucose (BG) prediction models 

for hospitalized patients diagnosed with Type 2 

Diabetes, employing weight ensemble optimization 

through Genetic Algorithms (GAs) on the outputs 

from RNN-based algorithms. The innovative 

approach of optimizing an ensemble of models, each 
based on a different algorithm, using GAs, 

significantly enhanced model performance and 

robustness to data variability, rather than relying on a 

single-algorithm model. A notable limitation of this 

study was the inclusion of potentially imprecise data 

for exogenic factors such as carbohydrate intake and 

dosage information of insulin, attributed to the real-

life conditions under which the data were collected 

and recorded. Consequently, the potential exists for 

multivariate models to exhibit substantially improved 

performance over univariate models in future 

research, provided that more accurately and 
rigorously collected data are utilized, even if the data 

volume remains constrained. 
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